
Pasmo documentation

(C) 2004-2006 Julián Albo.
Use and distribution allowed under the terms of the GPL license.
Last revision date: 23-jan-2006
Current Pasmo version: 0.6.0 (in progress)

Index

Introduction
Installation
Command line use
Code generation modes
 Default
 --bin
 --com
 --dump
 --hex
 --prl
 --rel
 --cmd
 --tap
 --tzx
 --cdt
 --tapbas
 --tzxbas
 --cdtbas
 --plus3dos
 --amsdos
 --msx
Symbol table
Source code format
Numeric literals
String literals
Identifiers
Labels
Directives
 .8080
 .8086
 .DEPHASE
 .ERROR
 .PHASE
 .SHIFT
 .WARNING
 .Z80
 ASEG
 CSEG
 DEFB
 DEFL
 DEFM

 DEFS
 DEFW
 DS
 DSEG
 DW
 ELSE
 END
 ENDIF
 ENDM
 ENDP
 EQU
 EXITM
 IF
 IF1
 IF2
 IFDEF
 IFNDEF
 INCLUDE
 INCBIN
 IRP
 IRPC
 LOCAL
 MACRO
 ORG
 PROC
 PUBLIC
 REPT
 SET
Operators
 Table of precedence
 List of operators
Directives
 .SHIFT
 ENDM
 EXITM
 IRP
 IRPC
 MACRO
 REPT
Macros
Suggestions and possible improvements
Tricks
Bugs
Epilogue

Introduction

Pasmo is a multiplatform Z80 and 8080 cross-assembler, easy to compile and easy to use. It

can generate object code in several formats suitable for many Z80 machines and emulators.
Pasmo generates fixed position code, can not be used to create relocatable object files for use with
linkers.

Pasmo is compatible with the syntax used in several old assemblers, by supporting several
styles of numeric and string literals and by providing several names of the most used directives.
However, in Pasmo the Z80 mnemonics, register and flags names and directives are reserved words,
this may require changes of symbol names conflicting in some programs.

Pasmo can also generate the 8086 equivalent to the z80 assembly code. It can create COM
files for MS-DOS, by using the binary generation mode, or CMD files for CP/M 86, by using the --cmd
generation mode. This feature is experimental, use with care.

Installation

Download Pasmo from http://www.arrakis.es/~ninsesabe/pasmo/.

Several binary executable are provided in the web, if your platform is not between these, or
wants a more recent version, you must download the source package and compile it. If you want to
compile it in windows you can use cygwin or mingw with the Makefile provided, with other compilers
you may need to create a project, workspace or whatever your compiler or IDE uses.

To compile you need gcc version 2.95 or later, with the c++ language included (usually a

package called g++-something). Other compilers may also be used, any reasonable standard
complaint c++ compiler must compile it with few or none corrections. From version 0.5.2 a configure
script is provided. You can use the usual './configure ; make ; make install' procedure. You have also
an official Debian package.

Command line use

Pasmo is invoked from command line as:
pasmo [options] [file.asm] [file.bin] [file.symbol [file.publics]]

Where file.asm is the source file, file.bin is the object file to be created and optionally
file.symbol is the file where the symbol table will be written and file.publics is the file for the public
symbols table. Both symbol file names can be an empty string for no generation or - to write in the
standard output. When the --public option is used this is handled in another way, see below. The
source and object file can also be specified with the options --input and --output. If the --link option is
used the source file must be omitted.

Default mode: If none of the code generation options is specified, then --bin mode is used by default.

Options can be zero or more of the following:

-1 ('one') Same as --debinfo1

-8 Same as --w8080

-B Same as –bracket

-E Same as –equ

-I (UC i) Same as --include-dir

-S Same as –skiplines

-d Same as –debinfo

-h Same as –help

-m Same as –module

-o Same as –output

-v Same as –verbose

--86 Generate 8086 code instead of Z80. This feature is experimental.

--after Place common segments after absolute segment when linking.

--alocal Use autolocal mode. In this mode all labels that begins with '_' are locals. See the

chapter about labels for details.

--amsdos Generate the object file in AMSDOS format.

--asm Sets the assembly language used at start (can be overridden in the source with the

.8080 and .Z80 directives). Possible values are Z80 and 8080. If not specified, Z80
mode is assumed.

--bin Generate the object file in raw binary format without headers.

--bracket Use bracket only mode. In this mode the parenthesis are valid only in expressions, for

indirections brackets must be used.

--cdt Generate the object file in .cdt format.

--cdtbas Same as --cdt but adding a Basic loader before the code.

--cmd Generate the object file in CP/M 86 CMD format.

--com Generate the object file in COM format.

--debinfo Show debug info during second pass of assembly.

--debinfo1 Show debug info during both passes of assembly.

--dump Generate the object file in readable hex dump format.

--equ Predefine a symbol. Predefined symbols are treated in a similar way to defineds with

EQU. Some possible uses are exemplified in the black.asm example file. The syntax is:
'--equ label=value' where label must be a valid label name and value a numeric constant
in a format valid in pasmo syntax. The part =value is optional, if not specified the value
assigned is FFFF hex.

--err Direct error messages to standard output instead of error output (except for errors in
options).

--help Show short information about options in standard error and exit.

--hex Generate the object file in Intel HEX format.

--include-dir Add directory to the list for searching files in INCLUDE and INCBIN.

--input Specify the file name to assembly. If this option is specified, the argument file.asm must

be omitted.

--link Link only. Do not assembly any source, just link relocatable modules.

--listing Specify a file name to generate an assembly listing.

--module Specify a REL module to link.

--msx Generate the object file in MSX format.

--name Name to put in the header in the formats that use it. If unspecified the object file name

will be used.

--nocase Make identifiers case insensitive.

--numerr Set the numbers of non fatal errors that can be reported before stop the assembly. If not

specified a value of 1 is assumed. A value of 0 means to never stop (almost, but Pasmo

will probably run out of memory before reaching the limit).

--output Specify the file name where to put the object code generated. If this option is specified,
the argument file.bin must be omitted.

--plus3dos Generate the object file in PLUS3DOS format.

--prl Generate the object file in CP/M PRL format.

--public Only the public symbols table is generated, using the file.symbol name, file.symbol must

not be specified when using this option.

--skiplines Skip the number of lines specified at the begin of the input file. Useful for debugging
during Pasmo development, don't know if it can have other interesting uses.

--tap Generate the object file in .tap format.

--tapbas Same as --tap but adding a Basic loader before the code.

--tzx Generate the object file in .tzx format.

--tzxbas Same as --txz but adding a Basic loader before the code.

--verbose Verbose mode. Show progress information about loading of files, progress of assembly

and maybe other things.

--version Show Pasmo version information in standard output and exit.

--w8080 Show warnings when Z80 instructions that have no equivalent in 8080 are used. Makes

easy to write programs for 8080 processor using Z80 assembler syntax.

The -d option is intended to debug pasmo itself but can also be useful to find errors in asm
code. When used the information is shown in the standard output. Error messages go to error ouptut
unless the --err option is used.

Code generation modes

Default mode: If none of the code generation options is specified, then --bin mode is used by default.

--bin This mode just dumps the code generated from the first position used without any

 header. This mode can be used for direct generation of CP/M or MSX COM files,
supposed that you use a ORG 100H directive at the beginning of the code, or to
generate blocks of code to be INCBINed in other programs.

--com This mode is similar to --bin, but code is assembled or linked starting at 0100 hex

without the need to ORG it. The reason for the use of the two options is to make it
easier to assemble without changes code written for DR ASM or similar assemblers and
code written for use with a relocatable assembler such as DR RMAC and a linker.

--dump This mode generates a human readable uppercase hexadecimal dump, consisting of

lines of 16 hexadecimal two digit numbers separated by spaces with the address of the
code at the beginning of the line as a four digit hexadecimal number followed by a colon
and a space.

--hex This mode generates code in Intel HEX format. This format can be used with the LOAD

or HEXCOM CP/M utilities, can be transmitted more easily than a binary format, and is
also used in some PROM programmers.

--prl The prl format is used in several variants of Digital Research CP/M operating system. In
 pasmo it is supported only to create RSX files for use in CP/M Plus, use for PRL files in

MP/M is not supported because I don't have a MP/M system, real or emulated, where to
test it.

--rel The REL relocatable format is used by Digital Research and Microsoft assemblers and

compilers, and many others. This version of Pasmo has preliminary support for it,
supporting only program segment, PUBLIC symbols, and sources that not use ORG
directives. Note that for compatibility you probably must use the --nocase mode, or write
all public symbols in upper case. Remember also that in REL files the identifiers are
truncated to 6 characters.

--cmd Tis option generates a CP/M 86 CMD mode, using the 8080 memory model of CP/M 86.

Used in conjuction with the --86 option can easily generate CP/M 86 executables from
CP/M 80 sources with minimal changes.

--tap The --tap options generates a tap file with a code block, with the loading position set to

the beginning of the code so you can load it from Basic with a LOAD "" CODE
instruction.

--tzx Same as --tap but using tzx format instead of tap.

--cdt This option generates a cdt file with a code block, with the loading position set to the

beginning of the code and the start address to the start point specified in the source,
if any, so you can use RUN "" to execute it or LOAD "" to load it.

--tapbas With this option a tap file is generated with two parts: a Basic loader and a code block
with the object code. The Basic loader does a CLEAR before the initial address of

the code, loads the code, and executes it if a entry point is defined (see the END
directive). That way you can directly launch the code in a emulator, or transfer it to a
tape for use in a real Spectrum.

--tzxbas Same as --tapbas but using tzx format instead of tap.

--cdtbas Same as --tapbas but using cdt format instead of tap and with a Locomotive Basic

loader instead of Spectrum Basic.

--plus3dos Generate the object file in plus3dos format, used by the Spectrum +3 disks. The file can

be loaded from Basic with a LOAD "filename" CODE instruction.

--amsdos Generate the object file with Amsdos header, used by the Amstrad CPC on disk files.

The file generated can be loaded from Basic with LOAD "filename", address or
executed with RUN "filename" if an entry point has been specified in the source (see the
END directive).

--msx Generate the object file with header for use with BLOAD in MSX Basic.

Symbol table

The symbol table generated contains all identifiers used in the program, with the locals
represented as a 8 digit hexadecimal number in order of use, unless the --public option is used. In
that case only the symbols specified in PUBLIC directives are listed.

The symbol table format is a list of EQU directives. That way you can INCLUDE it in another
source to create programs composed of several blocks.

Source code format

Source code files must be valid text files in the platform used. The use of, for example, Unix
text files under pasmo in windows, is unsupported and the result is undefined (may depend of the
compiler used to build pasmo, for example). The result of the use of a file that contains vertical tab or
form feed characters is also undefined.

Some symbols have several meanings depending on its use and the context, this is caused by
the intent to be source compatible with several old assemblers and to allow the use of operators
commonly used in another languages. The recommended way to avoid mistakes is to always
separate the operators and its operands with white space, especially inside macros.

Everything after a ; in a line is a comment (unless the ; is part of a string literal, of course).
There are no multiline comments, you can use IF 0 ENDIF instead (but see INCLUDE).
If the comment begins with ;; instead of a single ; it will not be included in macro expansion.

String literals are written to the object file without any character set translation. Then the use of
any character with a different meaning in the platform where pasmo is running and the destination
machine must be avoided, and the code of the character may be used instead. That also means that
using Pasmo in any machine that uses a non-ascii compatible character set may be difficult, and that
a source written in utf-8 may give undesired results. This may be changed in future versions of
Pasmo.

A line may begin with a decimal number followed by blanks. This number is ignored by the
assembler, is allowed for compatibility with old assemblers. The line number reported in errors is the
sequential number of the line in the file, not this.

Blanks are significative only in string literals and when they separate lexical elements. Any
number of blanks has the same meaning as one. A blank between operators and operands is allowed
but no required except when the same character has other meaning as prefix ('$' and '%', for
example).
Literals.

Numeric literals

Numeric literals can be written in decimal, binary, octal and hexadecimal formats. Several
formats are accepted to obtain compatibility with the source format of several assemblers.

&Hnnnn Hexadecimal constant, digits from 0 to 9 and A to F
0xnnnn
$nnnn Except for the lone $ operator (See operators section)
#nnnn Except for the ## operator (See operators section)

&Onnnn Octal constant, digits from 0 to 7

%nnnn Binary constant, digits from 0 to 1

A literal that begins with & can be hexadecimal, octal or binary constant, depending on the character
that follows the &: H means hexadecimal, O octal and X hexadecimal, if none of this the character
must be a valid hexadecimal digit and the constant is hexadecimal. See also the use of & in macros.

A literal that begins with % is a binary constant. See also the use of % in macro arguments.

A literal that begins with a decimal digit can be a decimal, binary, octal or hexadecimal. If the
digit is 0 and the following character is an X, the number is hexadecimal. If not, the suffix of the literal
is examined: D means decimal, B binary, H hexadecimal and O or Q octal, in any other case is taken
as decimal. Take care, FFFFh for example is not an hexadecimal constant, is an identifier, to write it
with the suffix notation you must do it as 0FFFFh.

All numeric formats can have $ signs between the digits to improve readability. They are
ignored.

String literals

There are two formats of string literals: single or double quote delimited.

A string literal delimited with single quotes is the simpler format, all characters are included in
the string without any special interpretation, with the only exception that two consecutive single
quotes are taken as one single quote character to be included in the string. For example: the single
quote delimited string 'That''s all folks' generates the same string as the double quote delimited
"That's all folks".

A string literal delimited with double quotes is interpreted in a way similar to the C and C++
languages. The \ character is taken as escape character, with the following interpretations: n is a new
line character (0A hex), r is a carriage return (0D hex), t is a tabulator (09 hex), a is a bell (07 hex), x
indicates that the two next characters will be considered the hexadecimal code of a char and a char
with that code is inserted, an octal digit prefixes and begins an octal number of up to three digits, and
the corresponding character is inserted into the string, the characters \ and " means to insert itself in
the string, and any other char is reserved for future use.

A string literal of length 1 or 2 can be used as a numeric constant with the numeric value of the
first character, and the second in this case as the high order byte. This allows expressions such as 'A'
+ 80h to be evaluated as expected.

Identifiers

Identifiers are the names used for labels, EQU and DEFL symbols and macro names and
parameters. The names of the Z80 mnemonics, registers and flag names, and of pasmo operands
and assemble directives are reserved and can not be used as names of identifiers, except in macro
parameters. Reserved names are case insensitive, even if case sensitive mode is used.

In the following 'letter' means an English letter character in upper or lower case. Characters
that correspond to letters in other languages are not allowed in identifiers.

Identifiers begin with a letter, '_', '?', '@' or '.', followed by zero or more letters, decimal digit, '_',
'?', '@', '.' or '$'. The '$' are ignored, but a reserved word with a '$' embedded or appended is not
recognized as such.

Identifiers that begin with '_' are special when using autolocal mode, see the --alocal option
and the chapter about labels for details. The check for autolocal is done before stripping '$', then
$_name is not considered local.

Identifiers are case sensitive if the option --nocase is not used. When using --nocase, they are
always converted to upper case.
File names.

File names are used in the INCLUDE and INCBIN directives. They follow special rules.

A file name that begins with a double quote character must end with another double quote, and
the file name contains all character between them without any special interpretation.

A file name that begins with a single quote character must end with another single quote, and
the file name contains all character between them without any special interpretation.

In any other case all characters until the next blank or the end of line are considered part of the
file name. Blank characters are space and tab.

Labels

A label can be placed at the beginning of any line, before any assembler mnemonic or
directive. Optionally can be followed by a ':', but is not recommended to use it in directives, for
compatibility with other assemblers, however it may be needed if a macro with the same name as the
label is already defined.

A line that has a label with no mnemonic nor directive is also valid.

The label has special meaning in the MACRO, EQU and DEFL directives, in any other case
the value of the current code generation position is assigned to the label.

Labels can be used before its definition, but the result of doing this with labels assigned with
DEFL is undefined.

The value of a label cannot be changed unless DEFL is used in all assignments of that label. If
the value assigned to a label is different in the two passes of the assembly the program is illegal, but
is not guaranteed that an error is generated. However, is legal to assign a value undefined in the first
pass (by using an expression that contains a label not yet defined, for example).

In the default mode a label is global unless declared as LOCAL into a MACRO, REPT or IRP
block, see the LOCAL directive for details.

In the autolocal mode, introduced by using the --alocal command line option, all labels that
begin with a '_' are locals. Its ambit ends at the next non local label or in the next PROC, LOCAL,
MACRO, REPT, IRP, IRPC, ENDP or ENDM directive. The check for autolocals is done before
stripping the '$' in the identifier, thus $_this_label_is_not_autolocal.

Both automatic and explicit local labels are represented in the symbol table listing as 8 digit
hexadecimal numbers, corresponding to the first use of the label in the source.

Directives

List of directives supported in Pasmo, in alphabetical order.

.8080 Sets the 8080 assembly language mode. After executing this directive and until the

end of file or a .Z80 directive, the source is interpreted as 8080 assembly code.

.8086 Reserved for future use.

.DEPHASE Terminates the effect of .PHASE, after this the code is generated relative to the current

position counter.

.ERROR Generates an error during assembly if the line is actively used, that is, in a macro if it
gets expanded, in an IF if the current branch is taken. All text following the directive is
used as error message.

.PHASE Take a numeric expression as argument. The code generated after this and until a
.DEPHASE or the end of the program is generated relative to the position specified in
the argument instead of the current position.

.SHIFT Shift MACRO arguments, see the chapter about macros.

.WARNING Same as .ERROR but emitting a a warning message instead of generating an error.

.Z80 Sets the Z80 assembly language mode. After executing this directive and until the end

of file or a .8080 directive, the source is interpreted as Z80 assembly code.

ASEG Absolute segment. Code generated until other segment directive is generated in
absolute address mode.

CSEG Code segment. Code generated until other segment directive is generated in code
segment relative address mode.

DB Define Byte. The argument is a comma separated list of string literals or numeric
expressions. The string literals are inserted in the object code, and the result of the
numeric expression is inserted as a single byte, truncating it if needed.

DEFB DEFine Byte, same as DB.

DEFL DEFine Label. Must be preceded by a label. The argument must be a numeric

Expression, the result is assigned to the label. The label used can be redefined with
other DEFL directive. DEFL is not recognized in 8080 mode, use SET instead.

DEFM DEFine Message, same as DB.

DEFS DEFine Space, same as DS.

DEFW Same as DW.

DS Define Space. Take one or two comma separated arguments. The first or only argument

is the amount of space to define, in bytes. The second is the value used to fill the space,

if absent 0 will be used.

DSEG Data segment. Code generated until other segment directive is generated in data
segment relative address mode.

DW Define Word. The argument is a comma separated list of numeric expressions. Each
numeric expression is evaluated as a two byte word and the result inserted in the code
in the Z80 word format.

ELSE See IF

END Ends the assembly. All lines after this directive are ignored. If it has an argument it is

evaluated as a numeric expression and the result is set as the program entry point. The
result of setting an entry point depends of the type of code generation used, may be
none but even in this case may be used for documentation purposes.

ENDIF See IF

ENDM Ends a macro, see the chapter about macros.

ENDP Marks the end of a PROC block, see PROC.

EQU EQUate. Must be preceded by a label. The argument must be a numeric expression,

the result is assigned to the label. The label used can't be redefined.

EXITM Exits a macro, see the chapter about macros.

IF Conditional assembly. The argument must be a numeric expression, a result of 0 is

considered as false, any other as true. If the argument is true the following code is
assembled until the end of the IF section or an ELSE directive is encountered, else is
ignored. If the ELSE directive is present the following code is ignored if the argument
was true, or is assembled if was false. The IF section is ended with a ENDIF or a
ENDM directive (in the last case the ENDM has also its usual effect). IF can be nested,
in that case each ELSE and ENDIF takes effect only on its corresponding IF, but ENDM
ends all pending IF sections.

IF1 Conditional assembly during first pass.

IF2 Conditional assembly during second pass.

IFDEF Conditional assembly if the argument, an identifier, is defined.

IFNDEF Conditional assembly if the argument, an identifier, is not defined.

INCLUDE Include a file. See the file names chapter for the conventions used in the argument. The

file is read and the result is the same as if the file were copied in the current file
instead of the INCLUDE line. The file included may contain INCLUDE directives, and
so on. The same file can be included several times, the file is read just one time,
provided the complete path and name is written equally. INCLUDE directives are
processed before the assembly phases. Because of this, before version 0.6.0 the use of
IF directives to conditionally include different files were not allowed. Now the file not

opened result is stored and only generates an error if the line is actively assembled. The
result of using unpaired directives in an included file is undefined, do it at your own risk.

INCBIN INClude BINary. Include a binary file. Reads a binary file and insert its content in the
generated code at the current position. See the file names chapter for the conventions
used in the argument.

IRP Repeat a block of code substituting arguments. See the chapter about macros.

IRPC Repeat a block of code for each char in the argument. See the chapter about macros.

LOCAL Marks identifiers as local to the current block. The block may be a MACRO, REPT, IRP

or PROC directive, the local ambit ends in the corresponding ENDM or ENDP directive.
The ambit begins at the LOCAL directive, not at the beginning of the block, take care
with that. If several LOCAL declarations of the same identifier are used in the same
block, only the first has effect, the others are ignored.

MACRO Defines a macro, see the chapter about macros.

ORG ORiGin. Establishes the origin position where to place generated code. Several ORG

directives can be used in the same program, but if the result is that code generate
overwrites previous, the result is undefined.

PROC Marks the begin of a PROC block. The only effect is to define an ambit for LOCAL
directives. The block ends with a corresponding ENDP directive. The recommended use
is to enclose a subroutine in a PROC block, but can also be used in any other situation.

PUBLIC The argument is a comma separated list of identifiers. Each identifier is marked as
public. When using the --public command line option only the identifiers marked as
public are included in the symbol table listing.

REPT REPeaTs a block. See the chapter about macros.

SET Only available in 8080 mode. Same as DEFL in Z80 mode.

Operators

All numeric values are taken as 16 bits unsigned, using 2 complement or truncating when
required. Logical operators return FFFF hex for true and 0 for false, in the arguments 0 is false and
any other value true.

Parenthesis may be used to group parts of expressions. They are also used to express
indirections in the z80 instructions that allows or require it. This can cause some errors when a
parenthesized expression is used in a place were an indirections is allowed. Pasmo uses some
heuristic to allow the expression to be correctly interpreted, but are far from perfect.

Using the bracket only mode the parenthesis have the unique meaning of grouping
expressions, brackets are required for indirections, thus solving ambiguities.

Short circuit evaluation: the && and || operators and the conditional expression are short
circuited. This means that if one of its operators need not be evaluated, it can include undefined
symbols or divisions by 0 without generating an error (but still must have correct syntax). In the
conditional expression this applies to the branch not taken, in the && operator to the second operand
if the first is false, and in the || operator to the second operand if the first is true.
Table of precedence.

Table of operators by order of precedence, those in the same line have the same precedence:

 ## (see note)
 $, NUL, DEFINED
 *, /, MOD, %, SHL, SHR, <<, >>
 +, - (binary)
 EQ, NE, LT, LE, GT, GE, =, !=, <, >, <=, >=
 NOT, ~, !, +, - (unary)
 AND, &
 OR, |, XOR
 &&
 ||
 HIGH, LOW
 ?

The ## operator is a special case, is processed during the macro expansion, see the chapter
about macros.

Note that the precedence is not the same as in some old assemblers, especially MASM.
Always mark precedence with parenthesis in code intended to be use with several different
assemblers.

Note also that HIGH and LOW are operators, not functions. To avoid confusion with
precedence rules the syntax required is not HIGH (argument), but (HIGH argument), or even (HIGH
(argument)) inside macros if the argument contains macro parameters.
Alphabetic list of operators.

! Logical not. Returns true if its argument is 0, false otherwise.

!= Same as NE.

Identifier pasting operator, see the chapter about macros.

$ Gives the value of the position counter at the beginning of the current sentence. For

example, in a DW directive it gives the position of the first item in the list, not the current
item.

% Same as MOD

& Same as AND

&& Logical and. True if both operands are true

* Multiplication

+ Addition or unary +

- Subtraction or unary -

/ Integer division, truncated

< Same as LT

<< Same as SHL

<= Same as LE

= Same as EQ

> Same as GT

>= Same as GE

>> Same as SHR

? Conditional expression. Must be followed by two expressions separated by a :, if the

expression on the right of ? is true, the first expression is evaluated, if false, the second.

| Same as OR

|| Logical or. True if one of the operands is true

~ Same as NOT

AND Bitwise and operator

DEFINED The argument must be an identifier. The result is true if the identifier is defined, false

otherwise.

EQ Equals. True if both operands are equal, false otherwise.

GE Greater than or equal to. True if the left operand is greater or equal than the right.

GT Greater than. True if the left operand is greater than the right.

HIGH Returns the high order byte of the argument.

LE Less than or equal to. True if the left operand is lesser or equal than the right.

LOW Returns the low order byte of the argument.

LT Less than. True if the left operand is lesser than the right.

MOD Modulus. The remainder of the integer division.

NE Not equal. False if both operands are equal, true otherwise.

NOT Bitwise not. Return the ones complement of its operand.

NUL Returns true if there is something at the right, else returns false. Useful if the

Arguments are parameters of macros.

OR Bitwise or operator

SHL Shift left. Returns the left operand shifted to the left the number of bits specified in the

Right operand, filling with zeroes.

SHR Shift right. Returns the left operand shifted to the right the number of bits specified in the
right operand, filling with zeroes.

XOR Bitwise XOR (exclusive or) operator

Macros

There are two types of macro directives: the proper MACRO directive and the repetition
directives REPT and IRP. In addition the ENDM and EXITM directives controls the end of the macro
expansion.
Parameters.

A macro parameter is an identifier that when the macro is expanded is substituted by the value
of the argument applied. The identifier used can have the same name of a keyword, the keyword is
not recognized as such in that case. Be careful, the readers of the macro code may get confused with
that.

Parameter expansion

By default, the parameters inside of a macro are expanded by substituting it with the
corresponding argument in the macro call.

If a MACRO is defined inside another macro directive the external parameters are not
substituted, with the other macro directives the parameter substitution is done beginning by the most
external directive.

The NUL operator can be used to check if the argument passed to the parameter is not empty.
The .SHIFT directive can be used to work with an undetermined number of arguments.

Identifier pasting: inside a macro the operator ## can be used to join two identifiers resulting in
another identifier. This is intended to allow the creation of identifiers dependent of macro arguments.

Forced expansion: the & is used to explicitly mark the expansion of a macro argument
following it without whitespace. It also allows parameter expansion inside a string literal. Unlike the ##
operator, when using it to create identifiers it does not suppress whitespace preceding it.

Arguments

Macro arguments are passed literally by default. This is not desirable in cases when the value
of a expression, because precedence rules can modify the result of the expansion inside other
expressions. In those cases, the % operator can be used at the beginning of a macro argument, it
evaluates the expression following, takes its value as a numeric literal in decimal and passes it as the
effective macro argument.

There are two types of macro arguments: the first is a comma separated list of items, where
each item is an arbitrary list of tokens. The second is a comma separated list of items between angle
brackets. Each item can be any token, or another angle bracket delimited expression. whitespace
between items is ignored.

The nested angle bracket delimited arguments can be used to include in the argument
whitespace or commas, or to pass arguments to be used as arguments of another macro.
Calling a macro.

A macro defined with the MACRO directive is called by using its name as if it were a directive
or instruction. The macro arguments are evaluated and assigned to the MACRO parameters. If there
are less arguments than parameters, the remainder get assigned an empty value. If there are more,
the remaining arguments are stored but not assigned to any parameter; they can only be accessed by
using the .SHIFT directive inside the macro.

There are some special cases when using the name of an already defined macro name:

This is a label with the same name as the macro:

 macroname:

This is a redefintion of macroname:

 macroname MACRO ...

In the following cases MACRO is taken as the beginning of the arguments of macroname. I
don't know any possible good use of this so it may be banned in future versions. If you consider it
useful, please send me code samples of its use.

 otherlabel macroname MACRO ...
 otherlabel: macroname MACRO ...

Directives

.SHIFT Can be used only inside a MACRO. The MACRO arguments are shifted one place to

the left, the first argument is discarded. If there are not enough arguments to fill the
parameter list after the shift, the remaining arguments get undefined.

ENDM Marks the end of the current MACRO definition, or the current REPT or IRP block. All IF

blocks contained in the macro block are also closed.

EXITM Exits the current MACRO, REPT or IRP block. In the case of MACRO, the macro

expansion is finished, in the other cases the code generation of the block is terminated
and the assembly continues after the corresponding ENDM.

IRP IRP parameter, argument list. Repeats the block of code between the IRP directive and

its corresponding ENDM one time for each of the arguments.

IRPC IRPC parameter, character list. Repeats the block of code between the IRPC directive

and its corresponding ENDM one time for each character in the list. The character list
can be a literal string or a macro argument between angle brackets.

MACRO Defines a macro. There are two forms that can be used:
 name MACRO [list of parameters]

or:
MACRO name [, list of parameters]

In all cases, list of parameters is a comma separated list of identifiers, and name is the
name assigned to the macro created. A macro is used by simply specifying its name,
and optionally a list of arguments. The arguments list does not need to have the same
length as the parameter list of the macro. If it is longer, the extra arguments are not
used, but can be retrieved by using .SHIFT inside the MACRO. If it is shorter some
parameters get undefined, this can be tested inside the MACRO by using the NUL
operator.

REPT Repeats the block of code between the REPT directive and its corresponding ENDM

the number of times specified in its argument. The argument can be 0, in that case the
block is skipped. Additionally, a loop var can be specified. This var is not a macro
parameter, is used as a LOCAL DEFL symbol, whose value is incremented in every loop
iteration. The initial value and increment can be specified, with defaults of 0 and 1
respectively.

REPT count
 REPT count, varname

 REPT count, varname, initial
 REPT count, varname, initial, increment

Update: In 0.6.0 the loop var is no longer a symbol, it is expanded like a macro
argument. That way will be much more useful with the new macro expansion
capabilities.

Suggestions and possible improvements

The assumption of Pasmo if that, being a cross-assembler, it will be used on a machine with
many available resources. Then I do not make any effort to provide means to do things that can be
easily made with other utilities, unless I think (or other people convince me) that including it in Pasmo
can be much more convenient.

For example, if you want to create a sin table you can write a program in your favorite

language that writes a file with the table and INCLUDE that file, and if you want to automate that type
of things you can use make.

Taking that into account, I am open to suggestions to improve Pasmo and to patches that
implement it. In the latter case please take care to write things in a portable way, without operating
system or compiler dependences.

Note: Please do not send patches during the current development of 0.6.0 version, I'm still
rewriting and rearranging some parts and integrating patches will be difficult. E-mail me about the
feature desired or bug, instead.

Why can’t Pasmo generate linkable code? Pasmo has a simple code generator that uses
absolute address of memory. That will make it difficult to adapt it to generate relocatable code for use
with linkers. I don't have plans to do it for the moment, maybe someone wants to contribute?

Update: Starting with version 0.6.0 pasmo can generate linkable code in REL format, and link
modules in that format. This feature is currently unfinished and poorly tested, please use with care
and report bugs.

Game Boy? Some people suggested to add support for Game Boy programming. There are
two problems, the simplified way used to generate code in Pasmo, and my non-existent knowledge of
the Game Boy. Thanks.

Thanks to all people that have made suggestions and notified me of or corrected bugs. And to
these that show me the beautiful things they do with Pasmo.

Tricks

You can use Pasmo to convert any binary file to .tap, just write a tiny program called for
example convert.asm:

 ORG address_to_load_the_file
 INCBIN file.bin

Assemble it with: pasmo --tap convert.asm file.tap, and you have it. The same may be done for
the other formats supported.

To obtain the code of an instruction you can do: echo 'ld a,b' | pasmo --input - -o - --dump

Bugs

Pasmo emits a warning when using a expression that looks like a non-existent z80 instruction,
such as 'ld b, (nn)', but the simplified way used to detect that also warns in cases like: 'ld
b,(i1+i2)*(i3+i4)'. A way to avoid the warning in that case is to prefix the expression with parenthesis
with '+' or '0 +'. Using the bracket only mode the problem does not exist, in that case the parenthesis
are always taken as expressions (and the programmer is supposed to know that), thus the warning is
not emitted. More suggestions about that are welcome.

Update: The new parser in 0.6.0 does a much better work, warning only if the expression is
entirely inside parenthesis.

There is no way to include a file whose name contains blanks, single and double quotes. Does
someone use file names like that?

Epilogue

That's all folks!

Send comments and criticisms to:
julian.notfound@gmail.com

